
Selected Solutions for Chapter 2:
Getting Started

Solution to Exercise 2.2-2

SELECTION-SORT.A/

n D A: length
for j D 1 to n � 1

smallest D j

for i D j C 1 to n

if AŒi� < AŒsmallest�
smallest D i

exchangeAŒj � with AŒsmallest�

The algorithm maintains the loop invariant that at the startof each iteration of the
outerfor loop, the subarrayAŒ1 : : j � 1� consists of thej � 1 smallest elements
in the arrayAŒ1 : : n�, and this subarray is in sorted order. After the firstn � 1

elements, the subarrayAŒ1 : : n � 1� contains the smallestn � 1 elements, sorted,
and therefore elementAŒn� must be the largest element.

The running time of the algorithm is‚.n2/ for all cases.

Solution to Exercise 2.2-4

Modify the algorithm so it tests whether the input satisfies some special-case con-
dition and, if it does, output a pre-computed answer. The best-case running time is
generally not a good measure of an algorithm.

Solution to Exercise 2.3-5

Procedure BINARY-SEARCH takes a sorted arrayA, a value�, and a range
Œlow : : high� of the array, in which we search for the value�. The procedure com-
pares� to the array entry at the midpoint of the range and decides to eliminate half
the range from further consideration. We give both iterative and recursive versions,
each of which returns either an indexi such thatAŒi� D �, or NIL if no entry of



2-2 Selected Solutions for Chapter 2: Getting Started

AŒlow : : high� contains the value�. The initial call to either version should have
the parametersA; �; 1; n.

ITERATIVE-BINARY-SEARCH.A; �; low; high/

while low � high
mid D b.low C high/=2c

if � == AŒmid�

return mid
elseif � > AŒmid�

low D mid C 1

else high D mid � 1

return NIL

RECURSIVE-BINARY-SEARCH.A; �; low; high/

if low > high
return NIL

mid D b.low C high/=2c

if � == AŒmid�

return mid
elseif � > AŒmid�

return RECURSIVE-BINARY-SEARCH.A; �; mid C 1; high/

else return RECURSIVE-BINARY-SEARCH.A; �; low; mid � 1/

Both procedures terminate the search unsuccessfully when the range is empty (i.e.,
low > high) and terminate it successfully if the value� has been found. Based
on the comparison of� to the middle element in the searched range, the search
continues with the range halved. The recurrence for these procedures is therefore
T .n/ D T .n=2/ C ‚.1/, whose solution isT .n/ D ‚.lg n/.

Solution to Problem 2-4

a. The inversions are.1; 5/; .2; 5/; .3; 4/; .3; 5/; .4; 5/. (Remember that inversions
are specified by indices rather than by the values in the array.)

b. The array with elements fromf1; 2; : : : ; ng with the most inversions is
hn; n � 1; n � 2; : : : ; 2; 1i. For all1 � i < j � n, there is an inversion.i; j /.
The number of such inversions is

�

n

2

�

D n.n � 1/=2.

c. Suppose that the arrayA starts out with an inversion.k; j /. Thenk < j and
AŒk� > AŒj �. At the time that the outerfor loop of lines 1–8 setskey D AŒj �,
the value that started inAŒk� is still somewhere to the left ofAŒj �. That is,
it’s in AŒi�, where1 � i < j , and so the inversion has become.i; j /. Some
iteration of thewhile loop of lines 5–7 movesAŒi� one position to the right.
Line 8 will eventually dropkey to the left of this element, thus eliminating the
inversion. Because line 5 moves only elements that are less thankey, it moves
only elements that correspond to inversions. In other words, each iteration of
thewhile loop of lines 5–7 corresponds to the elimination of one inversion.



Selected Solutions for Chapter 2: Getting Started 2-3

d. We follow the hint and modify merge sort to count the number ofinversions in
‚.n lg n/ time.

To start, let us define amerge-inversion as a situation within the execution of
merge sort in which the MERGE procedure, after copyingAŒp : : q� to L and
AŒq C 1 : : r� to R, has valuesx in L andy in R such thatx > y. Consider
an inversion.i; j /, and letx D AŒi� andy D AŒj �, so thati < j andx > y.
We claim that if we were to run merge sort, there would be exactly one merge-
inversion involvingx andy. To see why, observe that the only way in which
array elements change their positions is within the MERGE procedure. More-
over, since MERGEkeeps elements withinL in the same relative order to each
other, and correspondingly forR, the only way in which two elements can
change their ordering relative to each other is for the greater one to appear inL
and the lesser one to appear inR. Thus, there is at least one merge-inversion
involving x andy. To see that there is exactly one such merge-inversion, ob-
serve that after any call of MERGE that involves bothx andy, they are in the
same sorted subarray and will therefore both appear inL or both appear inR
in any given call thereafter. Thus, we have proven the claim.

We have shown that every inversion implies one merge-inversion. In fact, the
correspondence between inversions and merge-inversions is one-to-one. Sup-
pose we have a merge-inversion involving valuesx andy, wherex originally
wasAŒi� andy was originallyAŒj �. Since we have a merge-inversion,x > y.
And sincex is in L andy is in R, x must be within a subarray preceding the
subarray containingy. Thereforex started out in a positioni precedingy’s
original positionj , and so.i; j / is an inversion.

Having shown a one-to-one correspondence between inversions and merge-
inversions, it suffices for us to count merge-inversions.

Consider a merge-inversion involvingy in R. Let ´ be the smallest value inL
that is greater thany. At some point during the merging process,´ andy will
be the “exposed” values inL andR, i.e., we will havé D LŒi� andy D RŒj �

in line 13 of MERGE. At that time, there will be merge-inversions involvingy

andLŒi�; LŒi C 1�; LŒi C 2�; : : : ; LŒn1�, and thesen1 � i C 1 merge-inversions
will be the only ones involvingy. Therefore, we need to detect the first time
that´ andy become exposed during the MERGE procedure and add the value
of n1 � i C 1 at that time to our total count of merge-inversions.

The following pseudocode, modeled on merge sort, works as wehave just de-
scribed. It also sorts the arrayA.

COUNT-INVERSIONS.A; p; r/

in�ersions D 0

if p < r

q D b.p C r/=2c

in�ersions D in�ersions C COUNT-INVERSIONS.A; p; q/

in�ersions D in�ersions C COUNT-INVERSIONS.A; q C 1; r/

in�ersions D in�ersions C MERGE-INVERSIONS.A; p; q; r/

return in�ersions



2-4 Selected Solutions for Chapter 2: Getting Started

MERGE-INVERSIONS.A; p; q; r/

n1 D q � p C 1

n2 D r � q

let LŒ1 : : n1 C 1� andRŒ1 : : n2 C 1� be new arrays
for i D 1 to n1

LŒi� D AŒp C i � 1�

for j D 1 to n2

RŒj � D AŒq C j �

LŒn1 C 1� D 1

RŒn2 C 1� D 1

i D 1

j D 1

in�ersions D 0

counted D FALSE

for k D p to r

if counted == FALSE andRŒj � < LŒi�

in�ersions D in�ersions C n1 � i C 1

counted D TRUE

if LŒi� � RŒj �

AŒk� D LŒi�

i D i C 1

else AŒk� D RŒj �

j D j C 1

counted D FALSE

return in�ersions

The initial call is COUNT-INVERSIONS.A; 1; n/.

In MERGE-INVERSIONS, the boolean variablecounted indicates whether we
have counted the merge-inversions involvingRŒj �. We count them the first time
that bothRŒj � is exposed and a value greater thanRŒj � becomes exposed in
theL array. We setcounted to FALSE upon each time that a new value becomes
exposed inR. We don’t have to worry about merge-inversions involving the
sentinel1 in R, since no value inL will be greater than1.

Since we have added only a constant amount of additional workto each pro-
cedure call and to each iteration of the lastfor loop of the merging procedure,
the total running time of the above pseudocode is the same as for merge sort:
‚.n lg n/.


