Selected Solutionsfor Chapter 2:
Getting Started

Solution to Exercise 2.2-2

SELECTION-SORT(A)

n = A.length
for j = 1ton—1
smallest = j

fori =j+1ton
if A[i] < A[smallest]
smallest = i
exchanged[j] with A[smallest]

The algorithm maintains the loop invariant that at the sthdach iteration of the
outerfor loop, the subarrayi[1.. j — 1] consists of theg — 1 smallest elements
in the arrayA[l..n], and this subarray is in sorted order. After the first 1
elements, the subarray{l ..n — 1] contains the smallest — 1 elements, sorted,
and therefore element[n] must be the largest element.

The running time of the algorithm i®(n?) for all cases.

Solution to Exercise 2.2-4

Modify the algorithm so it tests whether the input satisfi@se special-case con-
dition and, if it does, output a pre-computed answer. Thé-t@se running time is
generally not a good measure of an algorithm.

Solution to Exercise 2.3-5

Procedure BNARY-SEARCH takes a sorted array, a valuev, and a range
[low. . high] of the array, in which we search for the valueThe procedure com-
paresv to the array entry at the midpoint of the range and decidebrturate half
the range from further consideration. We give both iteea#iad recursive versions,
each of which returns either an indéxsuch that4[i] = v, or NIL if no entry of



2-2 Selected Solutions for Chapter 2: Getting Sarted

Allow. . high] contains the value. The initial call to either version should have
the parameterd, v, 1, n.

ITERATIVE-BINARY-SEARCH(A, v, low, high)

whilelow < high
mid = [(low + high)/2|
if v==A[mid]
return mid
elseif v > A[mid]
low = mid + 1
elsehigh = mid—1
return NIL

RECURSIVEBINARY-SEARCH(A, v, low, high)

if low > high
return NIL
mid = | (low + high)/2]
if v==A[mid]
return mid
elseif v > A[mid]
return RECURSIVEBINARY-SEARCH(A, v, mid + 1, high)
elsereturn RECURSIVEBINARY-SEARCH(A, v, low, mid — 1)

Both procedures terminate the search unsuccessfully wiserange is empty (i.e.,
low > high) and terminate it successfully if the valuehas been found. Based
on the comparison of to the middle element in the searched range, the search
continues with the range halved. The recurrence for theseedures is therefore
T(n) = T(n/2) + ©(1), whose solution i§"(n) = ©(Ign).

Solution to Problem 2-4

a. Theinversions arél, 5), (2,5),(3,4),(3,5), (4,5). (Remember that inversions
are specified by indices rather than by the values in the array

b. The array with elements fronl,2,...,n} with the most inversions is
(n,n—1,n—2,...,2,1). Foralll <i < j < n, there is an inversiofi, j).
The number of such inversions(f$) = n(n —1)/2.

c. Suppose that the array starts out with an inversiofk, j). Thenk < j and
Alk] > A[j]. At the time that the outefior loop of lines 1-8 setkey = A[/],
the value that started id[k] is still somewhere to the left ofl[j]. That is,
it'sin A[i], wherel < i < j, and so the inversion has becoifiej). Some
iteration of thewhile loop of lines 5—7 movegi[i] one position to the right.
Line 8 will eventually drogkey to the left of this element, thus eliminating the
inversion. Because line 5 moves only elements that are hesgey, it moves
only elements that correspond to inversions. In other wagdsh iteration of
thewhileloop of lines 5-7 corresponds to the elimination of one is\@r.



Selected Solutions for Chapter 2: Getting Sarted 2-3

d. We follow the hint and modify merge sort to count the numbeaneérsions in
O lgn) time.

To start, let us define merge-inversion as a situation within the execution of
merge sort in which the MRGE procedure, after copyind[p..q] to L and
Alg + 1..r] to R, has values: in L andy in R such thatc > y. Consider
an inversion(i, j), and letx = A[i]andy = A[j], sothat < j andx > y.
We claim that if we were to run merge sort, there would be éxacte merge-
inversion involvingx andy. To see why, observe that the only way in which
array elements change their positions is within theRE procedure. More-
over, since MERGEkeeps elements withih in the same relative order to each
other, and correspondingly fak, the only way in which two elements can
change their ordering relative to each other is for the greate to appear in
and the lesser one to appearRn Thus, there is at least one merge-inversion
involving x andy. To see that there is exactly one such merge-inversion, ob-
serve that after any call of ERGEthat involves bothx and y, they are in the
same sorted subarray and will therefore both appedr an both appear iR

in any given call thereafter. Thus, we have proven the claim.

We have shown that every inversion implies one merge-ifmerdn fact, the
correspondence between inversions and merge-inversamseito-one. Sup-
pose we have a merge-inversion involving valuesnd y, wherex originally
wasA[i] andy was originallyA[j]. Since we have a merge-inversion> y.
And sincex isin L andy is in R, x must be within a subarray preceding the
subarray containing. Thereforex started out in a position precedingy’s
original positionj, and so(Z, j) is an inversion.

Having shown a one-to-one correspondence between inmsrsind merge-
inversions, it suffices for us to count merge-inversions.

Consider a merge-inversion involvingin R. Let z be the smallest value ih
that is greater tham. At some point during the merging procegsand y will

be the “exposed” values ih andR, i.e., we will havez = L[i] andy = R[/]

in line 13 of MERGE At that time, there will be merge-inversions involvimng
andL[i],L[i + 1], L[i +2],...,L[n,], and these; —i 4+ 1 merge-inversions
will be the only ones involving’. Therefore, we need to detect the first time
thatz andy become exposed during theB®GE procedure and add the value
of n; —i + 1 at that time to our total count of merge-inversions.

The following pseudocode, modeled on merge sort, works alsawve just de-
scribed. It also sorts the array.

COUNT-INVERSIONS(A, p, 1)
inversions = 0
ifp<r
qg=(p+r)/2]
inversions = inversions + COUNT-INVERSIONS 4, p, q)
inversions = inversions + COUNT-INVERSIONS A4,¢q + 1, 1)
inversions = inversions + MERGEINVERSIONS A4, p,q, 1)
return inversions



2-4

Selected Solutions for Chapter 2: Getting Sarted

MERGEINVERSIONS A, p,q,r)
n=q-p+1
n, =r—¢q
let L[1..n; + 1] andR[1..n, + 1] be new arrays
fori = 1ton;
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + /]
Rn, + 1] = o0
i=1
j=1
inversions = 0
counted = FALSE
fork = ptor
if counted == FALSEandR|[j] < L[i]
inversions = inversions+n; —i + 1
counted = TRUE
if L[i] < R[]
Alk] = L[i]
i=i+1
else Alk] = R[/]
J=J+1
counted = FALSE
return inversions

The initial call is GCOUNT-INVERSIONS A4, 1, n).

In MERGEINVERSIONS the boolean variableounted indicates whether we
have counted the merge-inversions involviRfg']. We count them the first time
that bothR[/] is exposed and a value greater thRfy] becomes exposed in
the L array. We setounted to FALSE upon each time that a new value becomes
exposed inkR. We don’'t have to worry about merge-inversions involving th
sentineloo in R, since no value il will be greater thamo.

Since we have added only a constant amount of additional teodach pro-
cedure call and to each iteration of the l&st loop of the merging procedure,
the total running time of the above pseudocode is the samer asdrge sort:
O lgn).



